
Risk Assessment and Mitigation for Access Control
mechanisms in OpenStack.

Adam Young

Red Hat Identity Management Team

Jul 15, 2015

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 1 / 48



Introduction

Risk Assessment and Mitigation for Access Control mechanisms in
OpenStack.

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 2 / 48



Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 3 / 48



Risk Assessment

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 4 / 48



Risk Assessment

Threats

Hypervisor Compromise: Tokens
validates the token
Nova Compute Runs on the Hypervisor
Tokens included included in requests
Rogue VM Harvest Tokens

Hypervisor Compromise: Trusts
Allow for a long term delegation
A rogue trust would by-pass the token expiry
Without Trusts, passwords will be copied around, which is even worse.
Easy to identify but you have to look

Authenticate via Token when fetching a token
Risk

Any scope can be converted to another scope
Expiration is not extended

Why:
Web UI does not cache password

Mitigate
Only allow unscoped to scoped transitions
Requires a call to explicitly request a scoped token

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 4 / 48



Risk Assessment Use of Tokens

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 5 / 48



Risk Assessment Use of Tokens

Big Tent Services that User Tokens

Barbican

Ceilometer

Cinder

Congress

Cue

Designate

Glance

Heat

Horizon

Ironic

Keystone

Magneto DB

Magnum

Manila

Mistral

Murano

Neutron

Nova

Sahara

Search light

Solum

Swift

TripleO

Trove

Zaqar

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 5 / 48



Risk Assessment Use of Tokens

Trove Uses Tokens

https://wiki.openstack.org/wiki/Trove/trove-diagrams

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 6 / 48



Risk Assessment Use of Tokens

Sahara Uses

http://docs.openstack.org/developer/sahara/architecture.html
Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 7 / 48



Risk Assessment Use of Tokens

Solum and Heat Use Tokens

http://solum.io/img/chart.png

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 8 / 48



Risk Assessment Use of Tokens

Barbican Uses Tokens

https://github.com/cloudkeep/barbican/wiki/Architecture

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 9 / 48



Risk Assessment Use of Tokens

Why Are Tokens on Hypervisor

Boot and Teardown

Barbican, Glance, Cinder, Neutron

Attach (Cinder)

Periodic Refresh (Neutron)

Snapshot (Glance)

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 10 / 48



Risk Assessment Use of Tokens

Why Are Tokens on Hypervisor

http://ilearnstack.com/2013/04/26/

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 11 / 48



Risk Assessment Use of Tokens

Other Users

Any third party application that drives OpenStack components uses tokens.

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 12 / 48



Design Considerations

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 13 / 48



Design Considerations

Status Quo

The current policy enforcement varies greatly between services

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 13 / 48



Design Considerations Roles and Scopes

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 14 / 48



Design Considerations Roles and Scopes

Scope of a Token

Most common role check is Admin with no scope

Most policy does not Check Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 14 / 48



Design Considerations Roles and Scopes

Role vs Scope

Every Rule should have Scope section and Role Section

Matching Scope should not be customized

Engineering decision
based on the object structure

Role Assigned to API should be customizable

Chose the roles appropriate to the organization
Default to Admin if not specified for target

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 15 / 48



Design Considerations Roles and Scopes

Global Admin

Most stock policy files have an account to fix things

Nova has it in code: nova/tree/nova/policy.py
return creds[’is admin’] == self.expected
”os compute api:os-lock-server:unlock:unlock override”:
”rule:admin api”,
”admin api”: ”is admin:True”,

Keystone has ADMIN TOKEN/OS SERVICE TOKEN

Check Role:admin without checking Scope

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 16 / 48



Design Considerations Roles and Scopes

Where is the Scope

project id in the URL

Nova list servers
http://hostname:8774/v2/¡project id¿/servers/detail
Trove list databases for instance
https://hostname/v1.0/¡project id¿/instances/¡instance id¿/databases
Keystone grant role to user on project
PUT
http://hostname:35357/projects/¡project id¿/users/¡user id¿/roles/¡role id¿
must confirm with database record

Use the scope from the token

Glance image list
http://hostname/v1/images
Won’t work with a global admin

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 17 / 48



Design Considerations Roles and Scopes

Where is the Scope (Continued)

Fetch object from Database

Ceilometer Rules mostly have
”context is project”: ”project id:
Keystone add user to group (Domain scoped)
PUT /groups/¡group id¿/users/¡user id¿

Object is not scoped to a project

Keystone User owns Credentials and Trusts
Domains own projects
Barbican user owns secrets

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 18 / 48



Design Considerations Roles and Scopes

Neutron Policy Rules

”shared *”:

”field:networks:shared=True”,
”field:firewalls:shared=True”,
”field:firewall policies:shared=True”,
”field:subnetpools:shared=True”,
”field:address scopes:shared=True”,

”get subnetpool”:

”rule:admin or owner or rule:shared subnetpools”,

(unscoped) admin role check OR access to the API is global

Limited to read only.

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 19 / 48



Design Considerations Roles and Scopes

What is a Role?

A label for a set of permissions across multiple services

But we have no way to share role information between services or
endpoints with stock policy files

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 20 / 48



Design Considerations Roles and Scopes

Problems with Role Assignments today

If I can assign one role, I can assign any role

Admin role is not scoped to a project

If I can assign admin, I am admin

Need to restrict ability to assignment only the roles/scope a user has
assigned to them.

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 21 / 48



Design Considerations Use Cases

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 22 / 48



Design Considerations Use Cases

Scope of a Token

Most common role check is Admin with no scope

Most policy does not Check Roles

member role was added by Keystone to deal with migration from
Tenant owning users

A scoped token used on any service is valid for any member
command anywhere else in the OpenStack Deployment

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 22 / 48



Design Considerations Use Cases

Member Use Cases

Boot

Heat
Sahara
Trove

Write Data

Glance
Trove

Read Only

Ceilometer
Searchlight

Create Trust

Heat
Solum

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 23 / 48



Design Considerations Use Cases

Tenancy Administration Use Cases

Nova

Quotas
Security Groups
Key Pairs

Cinder

Quotas

Glance

images

Keystone

create (sub)project
Assignments
Federation Mappings

Neutron

Networks
Subnets
Extensions

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 24 / 48



Design Considerations Use Cases

Service Administration Use Cases

Nova

Hypervisors
Floating ip associate
Cells

Keystone

Roles
Service Catalog
Policy
Identity Providers

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 25 / 48



Design Considerations Constraints

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 26 / 48



Design Considerations Constraints

Things we can’t break

Deployments expect the current stock policy files to work

Global Admin to the rescue

Where is the scope?

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 26 / 48



Dynamic Policy Mission

Agenda
1 Risk Assessment

Use of Tokens
2 Design Considerations

Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Agenda
1 Risk Assessment

Use of Tokens
2 Design Considerations

Roles and Scopes
Use Cases
Constraints

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 26 / 48



Dynamic Policy Mission

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 27 / 48



Dynamic Policy Mission

Goal

Minimize the damage that can be done with a stolen token:

A stolen token can only perform operations within the same class of
use cases.

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 27 / 48



Dynamic Policy Overall Plan

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 28 / 48



Dynamic Policy Overall Plan

Original Dynamic Policy Design

Graduate oslo policy to a library

Common code to enforce policy on a token

Fetch policy from Keystone

Provide a unified policy file

Database schema to hold policy rules.

Hierarchical roles

Generate rules from hierarchical roles

Break member up into smaller roles.

Use the smaller roles in the Policy targets.

Users can only assign a role that they themselves have on the
designated scope.

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 28 / 48



Dynamic Policy Overall Plan

Dynamic Policy Successes

Graduate oslo policy to a library complete

Fetch policy from Keystone no targeted at URLs, not Endpoint Ids

Kent has Proof of Concept for Database

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 29 / 48



Dynamic Policy Overall Plan

Dynamic Policy Adjustments

Unified Policy File may conflict dynamic natures of microversions

Hierarchical Roles now includes role namespacing

Kent design is better for querying

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 30 / 48



Dynamic Policy Policy Distribution

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 31 / 48



Dynamic Policy Policy Distribution

Why not Use Configuration Management System

Can be done, but has drawbacks

Removes Keystone’s ability to determine which policy file to fetch

Most installations treat Policy as static, and will not update even if
Keystone updates

Extracts Policy out of the application management flow

In the future, project specifc policy will require futher integration

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 31 / 48



Dynamic Policy Policy Distribution

Fetching the right policy file

policy to endpoint mapping has been defined for a while

to use it an endpoint needs to know its own id.

Fallback from most to least explicit:
1 explicitly define endpoint id in the config tile
2 explicitly define URL in the config file, map to ID via service catalog
3 Use Incoming URL on first request to match the URL in the Service

catalog.

config/request url.startswith(endpoint.url)

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 32 / 48



Dynamic Policy Policy Distribution

Why fetch by Endpoint

May not get a unified policy file

Need to server separate policy for each service

If customized for a specific server, we need to serve the policy for that
server

While this might be multiple endpointswe can treat all endpoints with
the same URL as one endpoint for policy reasons

CMS can calculate the URL prior to registering endpoint

With endpoint id: register, retreive ID, inject into config, restart
server

For most cases, middelware could deduce the URL from a request.

Why not Free form label?

Might be useful in the future
Would still require mapping to the endpoint

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 33 / 48



Dynamic Policy Policy Distribution

Where do we fetch?

Oslo.policy is not specific to RBAC

Fetching from Keystone is not specific to Oslo.policy

After token validation

Before Policy is called

Using Policy for Endpoint binding in Middleware

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 34 / 48



Dynamic Policy Policy Distribution

auth token vs policy middleware

auth token is purely a convenience,

does not require modifying pipelines

Separate middleware would be cleaner

Compromise: auth token as a series of separateable middleware
modules

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 35 / 48



Dynamic Policy Policy Distribution

Enforce policy from middleware

enforce policy on URLs, not random strings inside the code

role/scope split

only the role portion
this makes the most sense for customization

Scope would have to be enforced after database fetch for many
resources

Middleware can return HTTP 401 with extra knowledge of what role
is required

Bends the standard, but does not break it

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 36 / 48



Dynamic Policy Policy Distribution

Policy Endpoint Extension

Existing code

Associate a policy (by id) with an entry in the service catalog

Resolved from most specific
1 Endpoint
2 Service
3 Region
4 Default

But what do we use for default?

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 37 / 48



Dynamic Policy Policy Distribution

Single Unified Policy File

Not stock policy
Kept in its own repo
only deployed deliberately

Common section for common rules

Specify lowest role necessary

Single Policy Header

Move toward a single File

Hierarchical Roles

Break member up into smaller roles

Change the rules for specific API policy enforcement points to know
about the new roles.

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 38 / 48



Dynamic Policy Roles

Agenda

1 Risk Assessment
Use of Tokens

2 Design Considerations
Roles and Scopes
Use Cases
Constraints

3 Dynamic Policy
Mission
Overall Plan
Policy Distribution
Roles

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 39 / 48



Dynamic Policy Roles

Implied Roles

Hierarchical is overloaded term but what NIST uses

Implied roles:

Explicit-role IMPLIES Implicit-Role
Impicit Roles can IMPLY other Implicit-Roles
Admin IMPLIES Member
Member IMPLIES both Read-Only and Writeable

A user is assigned a role at the top of the hierarchy

A target specifies a role as low on the hierarchy as possible

A user can then delegate an implicit role instead of explicit

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 39 / 48



Dynamic Policy Roles

Global Admin

Better Global Admin

Global admin means user is in admin role on admin domain
In order to test that outside of Keystone server, we need to be able to
query Keystone config remotely Added Benefit: allows a way to query
default domain as well

Alternative to Global Admin

Provide a means for a specific user to get a token scoped to any
project with any role
Is it really any worse?

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 40 / 48



Dynamic Policy Roles

Role Namespaces

Roles are lables.

Currently, all roles are global

Roles hould map to the services

Admin versus Compute.admin, network.admin

Implied roles can still work across namespaces

Compute.boot implies network.reader

Can expand the role of Keystone beyond Undercloud:

Wordpress.editor
Gerrit.approver implies Git.committer

Segregated by Project Scope as well

Gerrit.approver on Openstack/Keystone vs
Gerrit.approver on Openstack/Nova

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 41 / 48



Dynamic Policy Roles

Scope All Entities

Keystone Service level entities be owned by the Admin Domain

Services
Endpoint
Regions
Roles

Lends itself to better delegation in the future

Scope Roles under services to Namespace

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 42 / 48



Dynamic Policy Roles

How Do We Know What Permissions to Delegate?

Changes are rare enough that we can figure out statically

When doing a Nova Boot, the Nova client can be smart enough to
get the right token.

All those things that call Nova boot need to be smart enought, too

As things get more complicated, we can run Tempest against policy
in permissive mode and see what would have gotten rejected.

This approach works for SELinux and AppArmor

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 43 / 48



Dynamic Policy Roles

Requesting a Token with a subset of roles

Request only the role required for the task at hand

“I need a token for booting a VM”

Ideally, a token would have only a single role

Added Benefit: Fernet-style token implementations smaller

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 44 / 48



Dynamic Policy Roles

Long lived delegations

shorter the token lifespan = smaller attack surface

No risk of timing out on long uploads etc

Nova could request a read only token for other services during boot.

Trusts and OAUTH1 should use the same logic

OAUTH Consumer becomes user in a custom domain

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 45 / 48



Dynamic Policy Roles

Unified Delegation

Role assignment Follows Trust model except we add concept of
Position or permanent role assignment

A user is assigned to a position
All permanent role assigments happen from position to position
A user can only delegate to a position a role that they themself are
assigned,either explicitly or implicitly
If a position goes unfilled, role assignments previously made from that
position are:

inactive until it is filled again, or
are approved by a higher authority

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 46 / 48



Dynamic Policy Roles

Task Ordering

Each commit should show value stand alone

Front load the changes that must be approved by the other projects

Start with dynamic fetch, manual management

Continue to refine the plan

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 47 / 48



Dynamic Policy Roles

Questions

Questions?

Adam Young (Red Hat Identity Management Team)OpenStack Liberty Keystone Midcycle Jul 15, 2015 48 / 48


	Risk Assessment
	Use of Tokens 

	Design Considerations
	Roles and Scopes
	Use Cases
	Constraints

	Dynamic Policy
	Mission
	Overall Plan
	Policy Distribution
	Roles


